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The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper
model as an example. This well-studied system has a rich variety of dynamical behavior depending on param-
eters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization,
anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different
quantum algorithms are presented and analyzed, enabling us to simulate efficiently the evolution operator of
this system with different precision using different resources. Depending on the parameters chosen, the system
is near integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities
which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a
polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the
parameter regime. We also present the effects of static imperfections on the quantities selected and show that
depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained
reliably with moderate levels of imperfection even for large number of qubits, whereas others are exponentially
sensitive to the number of qubits. In particular, the imperfection threshold for delocalization becomes expo-
nentially small in the partially delocalized regime. Our results show that interesting behavior can be observed
with as little as 7–8 qubits and can be reliably measured in presence of moderate levels of internal
imperfections.
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I. INTRODUCTION

In the past few years, the field of quantum information[1]
has attracted more and more attention in the scientific com-
munity. Among the most fascinating promises of this domain
is the possibility of building a quantum computer. Such a
quantum processor can use the superposition principle and
the interferences of quantum mechanics to perform new
types of algorithms which can be much more efficient than
classical algorithms. Celebrated examples are Shor’s algo-
rithm which factors large integers exponentially faster than
any known classical algorithm[2] and Grover’s algorithm
which searches unstructured lists quadratically faster than
classical methods[3]. Another type of quantum algorithms
concerns the simulation of physical systems. Examples in-
clude many-body quantum systems[4], classical and quan-
tum spin systems[5], and classical dynamical systems[6,7].
Algorithms implementing quantum maps are especially inter-
esting, since the systems simulated have simple equations of
motion but can display very complex behaviors. Their sim-
plicity enables one to simulate them with a small number of
qubits. For example, it is possible to simulate efficiently the
baker map[8] (experimental implementation with the NMR
technique has already been performed[9]), the quantum
kicked rotator[10,11], the sawtooth map[12], or the tent
map [13]. In such algorithms, it is important to determine
which physical quantities can be obtained accurately through
measurement on the quantum computer and what is the total
algorithmic complexity of the whole process. It is equally
important to determine the effects of errors in the computa-
tion to assess the efficiency of the algorithm on a realistic
quantum computer.

In the present paper, we will study in detail an important
example of quantum map—namely, the kicked Harper

model. The Hamiltonian of this system has a simple form,
yet displays many interesting physical features not present in
quantum maps previously studied in this context, such as
fractal spectra, stochastic web, anomalous diffusion, or coex-
istence of localized and delocalized states. It was introduced
in the context of solid-state physics(motion of electrons in
presence of magnetic field) and has been the subject of many
studies. Using this model as a test ground, we will present
three different ways of simulating the quantum map on a
quantum computer, two of them inspired by previous works,
and compare their efficiency. We will then present examples
of physical quantities which can be obtained on a quantum
computer. It turns out that depending on the parameters of
the system, at least polynomial speedup compared to classi-
cal algorithms can be obtained for different quantities. Nu-
merical simulations and analytical estimations will also
evaluate the effects of imperfections in the quantum com-
puter on the estimation of these quantities.

II. HARPER AND KICKED HARPER MODELS

The Harper model was introduced in 1955[14] to de-
scribe the motion of electrons in a two-dimensional lattice in
presence of a magnetic field. Its Hamiltonian reads

H0sI,ud = cossId + cossud. s1d

This Hamiltonian has been the subject of many studies(see,
for example,[15–19]), but its dynamics is somewhat re-
stricted by the fact that it describes an integrable system. A
generalization of this model was introduced some time ago;
it is called the kicked Harper model:
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HsI,u,td = L cossId + K cossudo
m

dst − md, s2d

wherem runs through all integers values andK ,L are con-
stants. This Hamiltonian reduces to Eq.(1) in the limit K
=L→0, but has a more complex dynamics depending on the
parameters. Its dynamics between two kicks can be inte-
grated to yield the map

Ī = I + K sinu, ū = u − L sin Ī . s3d

As in the case of the kicked rotator, there is a classical
periodicity in bothu and I. Thus the phase space is com-
posed of cells of size 2p32p where the same structures
repeat themselves.

This map(3) has been related to the motion of electrons
in a perpendicular magnetic and electric fields and also to the
problem of stochastic heating of a plasma in a magnetic field.

The quantization of Eq.(2) yields a periodic Hamiltonian
which after integration over one period yields a unitary evo-
lution operator acting on the wave functionc:

c̄ = Ûc = e−iL coss"n̂d/"e−iK cossûd/"c, s4d

wheren̂=−iQ] /]u andcsu+2Qpd=csud.
This system has been the subject of many studies in the

past few years, which focused on localization properties
[20–27], tunneling properties[28,29], etc.

In the limit K=L→0 the system is classically integrable.
For smallK ,L, chaos begins to appear around separatrices
and spreads over larger and larger phase space areas asK ,L
increase(see Fig. 1). In the regime of smallK ,L, classical
transport from cell to cell is possible only in the very small

chaotic zones around separatrices. ForK=L, this network of
thin chaotic zones surrounding large islands is called the
“stochastic web”(see Fig. 2). For intermediate values of
K ,L, the phase space is mixed, with integrable islands sepa-
rated by large chaotic zones. For largerK ,L, classical chaos
is present in most of the phase space(cf. Fig. 1), and a
typical trajectory will diffuse through the system. The quan-
tum dynamics is related to these classical properties, but
shows some striking differences. In the limitK=L→0, the
system is integrable and wave functions are concentrated
around classical tori, but complexity manifests itself in the
spectrum of the Hamiltonian, which is fractal(“Hofstadter
butterfly”). For smallK ,L the motion of a quantum wave
packet is dominated by the presence of classical invariant
curves; the wave packet can spread in between these curves
or cross them by quantum tunneling. For largerK ,L, in the
regime of classical diffusion, as in the kicked rotator, a phe-
nomenon similar to Anderson localization of electrons in dis-
ordered solids takes place. Through this phenomenon, called
dynamical localization, a wave packet started at some value
of momentumn will first spread, but contrary to classical
trajectories this spreading will saturate. This corresponds to

the fact that eigenfunctionscasnd of Û in Eq. (4) in momen-
tum space(they are called Floquet eigenfunctions since they
correspond to the action of the evolution operator during one
period) are exponentially localized. Their envelopes obey the
law casnd,exps−un−mu / ld /Îl wherem marks the center of
the eigenstate andl is the localization length. This phenom-
enon is especially visible for moderate values ofK, where all
eigenfunctions are localized. For larger values ofK, the sys-
tem undergoes a transition: some eigenfunctions are still lo-
calized, but more and more are delocalized(ergodic) and
spread over the whole system. This coexistence of localized
and delocalized states gives rise to specific physical proper-
ties. Indeed, it is very different from what happens in the

FIG. 1. Phase space of the classical kicked Harper model:K
=L→0 (Harper model) (upper left), K=L=0.5 (upper right), K=L
=1.5 (lower left), andK=L=2.5 (lower right) (10 000 iterations of
256 classical orbits). One cell of size 2p32p is shown, the phase
space being periodic.

FIG. 2. (Color online) Example of stochastic web in the kicked
Harper model. HereK=L=0.5, phase space is 838 cells of size
2p32p, and the figure shows positions aftert=1000 iterations of
106 classical trajectories initially distributed according to a Gauss-
ian centered half a cell above the center with standard deviation
Î2p /225<0.0004. Color(grayness) shows the density of points,
from red (gray) (maximal value) to blue (black) (minimal value).
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kicked rotator model, where usually all states are localized
once classical chaos is present(see, for example,[11]) or in
the Anderson transition(investigated in[30]) where the tran-
sition separates a regime where all eigenstates are localized
from a regime where all are delocalized. In this regime of
partial delocalization, an initial wave packet will spread, but
a certain fraction of the total probability will remain local-
ized. In addition, the diffusion of probability in momentum
space has been shown numerically to be anomalous, with an
exponent depending on the parameter values[17,22,23].
These properties are summarized by the phase diagram of
Fig. 3. Different quantities can be obtained in these different
regimes with the help of a quantum computer.

The phase space can be decomposed in cells of size 2p
32p. Its global topology depends on boundary conditions.
For a system of sizeNH, if the phase space is closed with
periodic boundary conditions, with, respectively,Q and P
cells in theu andn directions, then"=2pPQ/NH. Therefore,
if one wants to keep" constant, the productPQ should be
chosen such thatPQ/NH is the closest rational to" / s2pd.
For most of the results of this paper, the phase space will be
a cylinder closed in theu direction sQ=1d and extended in
the direction of momentum, and transport properties will be
studied in the momentum direction, as in the kicked rotator.
In this case" / s2pd was set to 1/h6+1/fsÎ5−1d /2gj=s13
−Î5d /82 as in[23] to avoid unwanted arithmetical effects.
The choice of a constant" implies that changing the number

of qubits leads to increasing the size of phase space(number
of cells) in then direction. Only for the study of the stochas-
tic web present at smallK=L (Sec. IV A) will the phase
space be extended in both directions and its size(number of
cells) fixed. In this case increasing the number of qubits
leads to smaller and smaller".

III. SIMULATING THE TIME EVOLUTION:
THREE POSSIBLE ALGORITHMS

The evolution operator(4) is composed of two transfor-
mations which are diagonal in, respectively, the momentum
and position representations. This form is general for a fam-
ily of kicked maps such as the kicked rotator, sawtooth map,
and others. On a classical computer, the fastest way to imple-
ment such an evolution operator on a wave function ofNH
components is to use the fast Fourier transform(FFT) algo-
rithm to shift back and forth between then andu represen-
tations and to implement each operator by direct multiplica-
tion in the basis where it is diagonal. In this way,
OsNH log NHd classical operations are needed to implement
Eq. (4) on aNH-dimensional vector. On a quantum computer,
it is possible to use the quantum Fourier transform(QFT) to
shift between momentum and position representations, using
O(slog NHd2) quantum gates. In each representation, one has
then to implement the multiplication by a phase,e−iL coss"n̂d/"

ande−iK cossûd/".
In the following we will envision three different strategies

to implement these diagonal operators:(i) exact computa-
tion using additional registers to hold the values of the co-
sines,(ii ) decomposition into a sequence of simpler operators
which are good approximations during short time slices, and
(iii ) direct computation, the cosine function being approxi-
mated by a(Chebyshev) polynomial.

The first one is in principle exact, but requires extra reg-
isters, and was already proposed in[10]. The second one has
some similarities with the one explained in[30] for another
system. The third one was not used in the context of quantum
algorithms to the best of our knowledge, although the
method is well known in computer science(see, for example,
[31] for a recent use of this method to simulate many-spin
systems on a classical computer). We note that an approxi-
mate algorithm to simulate the kicked Harper for long time
was used in[32]; however, in that paper the aim of the au-
thors was different, since they only wanted to construct effi-
ciently a good approximation of the ground-state wave func-
tion in order to use it for generating phase-space distributions
of other systems, and it is not clear that the method works for
other purposes. We also note that the simulation of the
Harper model on optical lattices was envisioned in[33]. In
the following discussions, we denote bynq the total number
of qubits including ancilla and workspace qubits, andN
=2nq is the total dimension of the Hilbert space of the quan-
tum computer. We denotenr with nr ønq, the number of
qubits describing the Hilbert space of the kicked Harper
model[i.e., the wave function evolved through Eq.(4) is NH
dimensional withNH=2nr], andng is the number of elemen-
tary quantum gates used for one iteration of the quantum
map (4).

FIG. 3. Map of delocalization in thesK ,Ld plane. Grayness
represents the inverse participation ratioj=1/Snucsndu4 (IPR), a
measure of delocalization of states, fromj=1 (state localized on
one momentum state) to j=NH (totally delocalized state) (NH is the
dimension of the Hilbert space). Contour lines correspond to values
of j ranging from 32 to 192 by increments of 32,NH=29, " /2p
=s13−Î5d /82 (actual value is the nearest fraction with denominator
29). White corresponds to lowest values, black to maximal values of
j. Eachj value is obtained by averaging over all eigenstates of the

evolution operatorÛ of Eq. (4).
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A. Exact algorithm

This approach is similar to the one taken in[10] for the
quantum simulation of the kicked rotator. In each represen-
tation, the value of the cosines is built on a separate register
and then transferred to the phase of the wave function by
appropriate gates.

If one starts with aNH-dimensional wave functionucl
=oi=0

NH−1aiuuil in the u representation, withNH=2nr, then the
first step is to perform

o
i=0

NH−1

aiuuilu0l → o
i=0

NH−1

aiuuilucosuil.

To this aim, the 2nr values coss2p /2jd and sins2p /2jd, for
j =1, . . . ,nr, are first precomputed classically with precision
2−np with, for example,np=2nr using a recursive method
based on Moivre’s formula; then, sinceui =o j=1

nr bi j2p /2j

with bi j =0 or 1, one has

expsiuid = p
j=1

nr

expsibi j2p/2jd

= p
j=1

nr

fcossbi j2p/2jd + i sinsbi j2p/2jdg.

This enables to computeucosuil for eachui in nr multi-
plications by expsi2p /2jd conditioned by the values ofbi j ,
needing in totalOsnr

3d quantum gates.
Then once the binary decomposition of cosui is present

on the second register, conditional application of thenr one-
qubit gates

S1 0

0 exps− iK2−j/"d
D

yields the state

o
i=0

NH−1

ai expf− iK cossuid/"guuilucosuil.

Then the cosines in the last register are erased by running
backward the sequence of gates that constructed them, and
one ends up with the state

o
i=0

NH−1

ai expf− iK cossuid/"guuilu0l,

which is the result of the action of the unitary operator

expf−iK cossûd /"g on ucl.
Then the use of the QFT which needsOsnr

2d quantum
gates shifts the wave function to the momentum representa-
tion, and exactly the same technique as above enables us to
implement the operator expf−iL coss"n̂d /"g in Osnr

3d quan-
tum gates. A second QFT enables us to go back to theu
representation.

The whole process implements one iteration of the evolu-

tion operatorÛ in Osnr
3d operations, with exponential preci-

sion. This algorithm is therefore efficient, and precision can
be increased exponentially at a cost of polynomial number of

operations. On the other hand, the drawback of this approach
is the need of several extra registers(one holding the values
of the cosines, plus others for the workspace of the compu-
tation) and a relatively large number of gates. In the present
status of experimental implementations of quantum comput-
ers, both the number of qubits and the number of gates that
can be applied are very expensive resources. In the follow-
ing, we will therefore expose two alternative strategies to

implementÛ, which are much more economical in the use of
resources, but involve additional approximations.

B. Slice method

This technique enables to compute the operatorÛ of Eq.
(4) without explicitly calculating the cosines. It approximates

Û by a sequence of many operators, each of them being
easier to compute. It can be viewed as “slicing” the operator
into elementary operators.

As above, we start with aNH-dimensional wave function
ucl=oi=0

NH−1aiuuil in theu representation, withNH=2nr. In gen-
eral, suppose we want to perform the operator

Uk = e−ik cosspûd.

In the u representation, this operator is diagonal, so we
just have to multiply each state by the phasee−ik cosspud. First,
we write u as

u =
2p

NH
o
i=0

nr−1

di2
i , s5d

where thedi’s are the binary expansion ofu andNH=2nr. If
p=2am with m odd, then

pu =
2pm

NH
S o

i=0

nr−a−1

di2
i+aDmod 2p.

ThusUk is equivalent to applying

e−ik cossmud

on thenr −a first qubits. In the following, we will suppose
that p is odd sa=0d for the sake of simplicity.

With the help of one ancilla qubit, let us perform the
following sequence, where all gates are applied to the ancilla
(initially set to u0l), except forCU which is the operatorU
applied on the principal register, controlled by the ancilla
(the gate sequence is also displayed in Fig. 4):

Msa,Ud = HCUHeisa/2dszHCU−2Heisa/2dszHCUH.

This product is equal to

FIG. 4. Gate sequence for slices algorithm.Rz areZ rotations of
angle −a.
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Msa,Ud = cos2
a

2
− sin2 a

2

U2 + U−2

2
+ i sina

U + U−1

2
sz

− i sin2 a

2

U2 − U−2

2i
sx

= 1 + ia
U + U−1

2
sz + Osa2d for a ! 1.

If we takeU=eipu,

Msa,Ud = 1 + ia cosspudsz + Osa2d,

since the ancilla qubit is in theu0l state,

Msa,Ud < eia cosspûd.

The kick operator can then be performed byns@1 applica-
tions of Msa ,Ud:

Uk < Msa,Udns with a =
− k

ns
.

A more accurate expansion can be obtained by symme-
trizing Msa ,Ud:

M̃sa,Ud = MSa

2
,UDMSa

2
,U−1D

= 1 + ia
U + U−1

2
sz −

a2

2
SU + U−1

2
D2

+ Osa3d.

ThusUk<M̃sa ,Udns up to order 2 ina.
In this way, once a certain precision has been fixed,ns can

be chosen such that the error is small enough.
If we apply this strategy to the kicked Harper model, the

method is therefore to first compute expf−iK cossûd /"g
through the technique abovesk=K /" ,p=1d, then use a QFT
to shift to the momentum representation. In then represen-
tation, the operator expf−iL coss"n̂d /"g can be cast in the
form above for"=2pm/NH, with p→m, k→L /", and u
→2pn/NH. The use of a QFT then shifts back the wave
function to theu representation.

The evolution of aNH-dimensional wave function with
NH=2nr through one time slice is efficient, costingOslog NHd
quantum operations. Indeed, forns slices, one diagonal op-
erator in Eq.(4) is implemented in 4+2snr −ad+sns−1df7
+2snr −adg elementary gates, withaønr. The number of
slices fixes the precision. If one requires a fixed precision,
independent of the number of qubits, then the whole method

is efficient, iteratingÛ in O(slog NHd2) operations(the most
costly operation asymptotically being the QFT). However, if
one requires the precision to increase withNH, then the
method becomes less efficient. This algorithm is quite eco-
nomical in qubits, since to simulate a wave function on a
Hilbert space of dimension 2nr, only nq=nr +1 qubits are
needed. One should note that for large number of slices, their
computation dominate the computation time although as-
ymptotically the QFT dominates. In all numerical simula-
tions we performed, the slice contribution was indeed
dominant.

To precise the accuracy of the method, we show examples
of the localization length in the localized regime as a func-
tion of number of gates in Fig. 5. The convergence with
increasing number of slices(gates) is clearly seen, although
for a small number of gates oscillations are present. Data
from nr =7,8 andnr =9,10 areclose to each other due to the
structure of the algorithm: indeed," / s2pd is approximated
by its closer approximantsm/NH, and incrementingnr by 1
changes every other time the value of". No major modifi-
cation is seen in the numerical data for increasingnr, indi-
cating that in this regimens does not need to be drastically
changed withnr.

One may think that the spectrum is a much more sensitive
quantity than the localization length. In Fig. 6, we display the

convergence for the spectrum ofÛ for K and L small, in a
parameter regime close to the fractal “butterfly” visible for
the unkicked Harper model(see Fig. 24). The quantities dis-

played correspond to eigenphasesEa where Ûucal
=expsiEaducal for someucal. The matrix of the operatorÛ of
Eq. (4) is built by evolving through the slice method ex-
plained above the basis vectors and then diagonalized. Con-
vergence can be achieved with a few hundred time slices.
Due to numerical limitations, we cannot present data for dif-
ferent values ofnr, but we do not expect any drastic modifi-
cation.

In the subsequent sections, numerical simulations of this
algorithm in presence of errors will be performed. To keep
the computation time reasonable, we chose to use the slice
method with 2340 slices per iteration for transport proper-
ties (Sec. IV). Although the localization length is not exactly
the correct one, the system is still localized and enables to
study the variation of transport properties in presence of er-
rors and imperfections. For computation of the spectrum
(Sec. V), we used 23100 slices per iteration.

FIG. 5. Localization length computed with the slice method
over exact localization lengthl0 as a function of number of slices
per iteration. Localization length is extracted aftert=1000 itera-
tions. Initial state is uc0l= u0l, with K=1, L=5, " /2p=s13
−Î5d /82 (actual value is the nearest fraction with denominator 2nr

with nr =nq−1).
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C. Chebyshev polynomials

In this approach, one uses the QFT as in the preceding
methods to shift back and forth betweenu andn representa-
tions. In each representation, the relevant operator is imple-
mented by using a polynomial approximation of the cosines.
Since polynomials can be implemented directly through con-
trolled operations, this avoids the use of additional registers.
A commonly used polynomial approximation rests on
Chebyshev polynomials.

Chebyshev polynomials(see, for example,[34]) are de-
fined by the recurrence relation

T0sxd = 1,

T1sxd = x,

Tnsxd = 2xTn−1sxd − Tn−2sxd for n ù 2.

They are bounded by −1 and 1 onf−1,1g, with their extrema
smoothly distributed over this interval. Iffsxd is an arbitrary
function onf−1,1g and we define, forj =0, . . . ,M −1,

cj =
2

M
o
k=0

M−1

f3cos1pSk +
1

2
D

M
24cos1p jSk +

1

2
D

M
2 ,

then, for largeM,

o
j=0

M−1

cjTjsxd −
1

2
c0

is a very good approximation offsxd on f−1,1g.
If we truncate this formula to orderm,

o
j=0

m

cjTjsxd −
1

2
c0,

then the error is bounded byo j=m+1
M−1 ucku and smoothly spread

over f−1,1g. Practically, theck’s are always rapidly decreas-
ing, so the error term is dominated byucm+1u and we can
choose a smallm while still keeping a good polynomial ap-
proximation of fsxd.

Let Psxd be a Chebyshev polynomial approximation of
cosfpsx+1dg. If one wants to perform the operatorUk

=e−ik cosspûd on a NH-dimensional vector withNH=2nr as in
the preceding subsection, then, forp=1,

Uk < e−ikPsû/p−1d.

Uk can be decomposed as a product of operators of the form

Arsbd=eibûr
.

From Eq.(5),

eibur
= p

j1¯ j r

eibs2p/NHdrdj1
¯djr

2j1+¯+j r .

Since thedj’s are binary digits,dj1
¯djr

is equal to 0 unless
all terms are equal to 1. If we denote byCj1¯ j r

sfd the mul-
ticontrolled phase gate, which apply the phase expsifd con-
ditionally on the control qubitsj1¯ j r (if an index is redun-
dant, then it is counted only once),

Arsbd = p
j1¯ j r

Cj1¯ j rXbS2p

NH
Dr

2j1+¯+j rC .

Since all these gates commute and since all the gates used
for the construction ofAr are also present in the development
of Ar8 for r8ù r, then all the terms of the polynomialP can
be applied at the same time as the term of highest order by
merging similar gates.

If pÞ1, thenp is split intop=2am with m odd, as in Sec.
III B. The even part 2a is dealt with by applyingUk only on
the nr −a first qubits. We then multiply the register bym
before applying the cosine kick. Sincem is coprime with the
dimension of the Hilbert spaceNH=2nr, this operation is uni-
tary and can be performed without any additional qubit(for
example with the circuit in Fig. 7).

If we choose a Chebyshev polynomial approximation of
degreed, then the complexity of the algorithm isOsnr

dd.
This method is economical in qubits, and the precision of the
approximation is easy to control. On the other hand, the
complexity increases with the precision, and this can become
prohibitive for very precise simulations. It is nevertheless
quite efficient for fixed precision computations, as can be
inferred from the fact that it is actually the method used in
classical computers to evaluate functions.

In our numerical simulations, we found that a Chebyshev
polynomial of degree 6 was enough to get a very good ap-
proximation of the wave function. This demands a much
larger number of gates than the slice method and scales badly
with nq, in nq

6 (herenq=nr since there are no ancilla or work-
space qubit). However, some of the control-phase gates have
very small phases and are physically irrelevant. We can then
choose a precision threshold and simply drop all the gates

FIG. 6. Eigenphases of Eq.(4) as a function of number of gates
with the slice method: only 16 values are shown. Herenr =6 snq

=nr +1d, "=2p /26, K=L=10−3.
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with phases below this threshold. The distribution of the
phases of the gates computing the Chebyshev approximant
of degree 6 is displayed in the inset of Fig. 8.

This method of approximation is investigated in Figs. 8
and 9. The localization length as a function of number of
gates is displayed in Fig. 8, for the same system parameters
as in Fig. 5. In Fig. 9, we display the convergence for the
spectrum, in the same regime as in Fig. 6.

In both cases, the convergence is good for maximal num-
ber of gates, showing that the polynomial of degree 6 is
indeed a good enough approximation in this regime of pa-
rameters. A good accuracy is achieved for a lower number of
gates, implying that dropping the gates with the smallest

phases can be an effective way to shorten the computation
keeping a reasonable accuracy. Still, the data presented lead
to the conclusion that even with the elimination of a large
number of gates the method is clearly costlier in running
time than the slice method to achieve similar precision.

IV. TRANSPORT PROPERTIES: MEASUREMENT
AND IMPERFECTION EFFECTS

The three methods exposed above enable to simulate ef-

ficiently the effects of the evolution operatorÛ of the kicked
Harper model on a wave function. This produces the wave
function at a given time. An important question concerns
which quantities can be obtained through quantum measure-
ment of the registers and if the whole process including mea-
surement is more efficient than classical computation. A
separate question but also related to practical efficiency of
these algorithms is their stability with respect to errors and
imperfections while running them on a realistic quantum
computer.

In this section, we will focus on the transport properties of
the wave function. We recall that for the kicked Harper
model, for smallK ,L diffusion can only takes place on the
small chaotic layer of the stochastic web. Then for larger
K ,L there is a regime of parameters where all eigenstates are
localized and another regime where localized and delocal-
ized eigenstates coexist(see Fig. 3). In these different param-
eter regimes, we will show that quantities measuring local-
ization properties and diffusion can be obtained on a
quantum computer more efficiently than on a classical de-
vice, although the gain is usually polynomial. We will then
test the resilience to errors of these quantities obtained
through the quantum algorithms, in particular through large-
scale numerical computations. The error model we chose

FIG. 7. Circuit for multiplying the quantum registeru (simple
lines) by an odd classical numberm (double lines).

FIG. 8. Localization length computed with the Chebyshev
method over exact localization lengthl0 as a function of number of
gates. System parameters are the same as in Fig. 5, withnr =7
(dashed line), nr =8 (dotted line), and nr =9 (solid line) snq=nrd.
Dashed horizontal line isl = l0. Chebyshev polynomial of degree 6
is taken, keeping gates with the largest phases. Inset: number of
gates as a function of their phase. Logarithms are decimal.

FIG. 9. Eigenphases of Eq.(4) as a function of number of gates
with the Chebyshev method. System is the same as in Fig. 6.
Chebyshev polynomial of degree 6 is taken, keeping gates with the
largest phases. An overall phase factor(global motion of eigenval-
ues) has been eliminated.
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corresponds to static internal imperfections. Indeed, physical
realization of a quantum computer will never be perfect, and
some amount of disorder will always be present. In particu-
lar, interactions between qubits, which are needed to build
the two-qubit gates, cannot in general be totally eliminated
when they are not needed. These static imperfections are not
linked to interaction with the outside world; they have been
shown to give important effects, which can be larger than the
effects of noisy gates[12,35,36]. To model such errors, be-
tween each gate we require that the system evolves through
the Hamiltonian

H1 = o
i

sD0 + didsi
z + o

i

Jisi
xsi+1

x , s6d

where thesi are the Pauli matrices for the qubiti and the
second sum runs over nearest-neighbor qubit pairs on a cir-
cular chain. The energy spacing between the two states of a
qubit is represented by its average valueD0 plus a detuning
di randomly and uniformly distributed in the intervalf
−d /2 ,d /2g. The detuning parameterd gives the width of the
distribution near the average valueD0 and may vary from
0 to D0. The couplingsJi represent the residual static inter-
action between qubits and are chosen randomly and uni-
formly distributed in the interval
f−J/2 ,J/2g. We make the approximation that this Hamil-
tonian (6) acts during a timetg between each gate which is
taken as instantaneous. Throughout the paper, we take in
general one single rescaled parameter« which describes the
amplitude of these static errors, with«=dtg=Jtg. To probe
the transport properties of the kicked Harper model on a
quantum computer, we chose to set" constant; in this way,
changing the number of qubits is equivalent to changing the
size of phase space(adding one qubit doubles the size of the
phase space). The only exception is in the first following
subsection(near-integrable regime), where the phase-space
volume is constant and" varies with the number of qubits.
Throughout this section, effects of imperfections will be as-
sessed using the slice method to implement Eq.(4). There-
fore the presence of one ancilla qubit implies thatnq=nr +1
in all of this section.

A. Near-integrable regime: Stochastic web

For K ,L very small, the classical system is near inte-
grable: quantum transport is dominated by the presence of
invariant curves. Motion from cell to cell can take place only
by tunneling effect or by moving in the small chaotic zone
around separatrices. In the caseK=L, this small layer forms
a “stochastic web”(see Fig. 2) which extends in bothu and
n directions. A wave packet started in this region will slowly
diffuse along this web. This process is best seen using quan-
tum phase-space distributions, which allow direct compari-
sons between classical distributions such as the ones in Fig. 1
and 2 and quantum wave functions.

The Wigner function[37,38] is an example of such quan-
tum phase space distribution. However, it can take negative
values, and only a smoothing over cells of area" gives non-
negative values. The use of a Gaussian smoothing leads to
the Husimi distribution(see, e.g.,[39]) which in our case is
defined by the formula

hsu,nd =Î 2P

QNH
3

3U o
m=n−NH/2+1

n+NH/2

csmde−spP/NHQdsm − nd2e2ipmQ/NHU2

,

s7d

where the Gaussian for simplicity is truncated for values
larger thanNH /2, csmd is the wave function in momentum
representation,P sQd is the number of cells in the momen-
tum (position) direction,NH=2nr is the dimension of the Hil-
bert space, andQ=NHu / s2pQd. We note that methods to
compute phase-space distributions on a quantum computer
were discussed in[13,32,40].

In Fig. 10 we show the spreading of a wave packet along
the stochastic web for different numbers of qubits and differ-
ent strengths of imperfections. In this picture, the size of the
classical phase space is fixed, and the number of qubits gives
the value of". A diffusion process is observed, which can be
related both to the classical diffusion on the stochastic web
(Fig. 2) and to the effect of quantum tunneling from cells to
cells. The diffusion constant is seen from Fig. 10 to depend
on "; it also depends onK ,L (data not shown) and is clearly
different from the classical diffusion constant(compare the
different times in Figs. 2 and 10). In this near-integrable
regime, the tunneling process is quite complicated and was
recently studied in[29]. In the same figure, one can see that
with moderate levels of imperfections the exact Husimi dis-
tribution is well reproduced by the algorithm.

To probe transport properties in this regime, one can start
a wave packet in the stochastic web and let it evolve. After a
certain number of time steps, the diffusion constant can be
obtained from measurement of the wave function. As the
number of components of the wave function or of the Husimi
distribution becomes exponentially large asnr increases, the
best way is to use coarse-grained measurements: measuring
only the first qubits adds up the amplitudes squared of many
neighboring components and limits the number of measure-
ments to a fixed value. This can be done to the wave function
directly in the momentum or position representation or to the
Husimi function provided all the values are kept on a quan-
tum register. For example, the Husimi-like function devel-
oped in[13] can be obtained by modified Fourier transform
from the wave function and allows the use of coarse-grained
measurements. If one starts a wave packet on the stochastic
web, it will diffuse according to the lawksstd2l<Dst, with s
being a distance in phase space andDs the diffusion constant.
Performing time evolution up to a timet* requirest* quan-
tum operations multiplied by logarithmic factors. At this
stage, a fixed number of coarse-grained measurements is
enough to give an approximation ofDs. On a classical com-
puter, one can truncate the Hilbert space up to the maximal
dimension effectively used in the calculation, which is of the
orderÎt*. Propagating the wave packet will costt* Ît* clas-
sical operations, after whichDs can be obtained. Therefore
the quantum computation is polynomially faster than the
classical one. Methods which use an ancilla qubit to measure
the value of phase-space distributions at a given point such
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as the ones in[32,40] will necessitate extra measurements
since they cannot be used to perform coarse-grained mea-
surements efficiently. Still, by reducingK ,L as nr is in-
creased, one can keep the number of large components of the
Husimi function of the wave packet of orderNH (instead of
NH

2 ). In this case, the Husimi function measured on the an-
cilla qubit of [32] is efficiently measurable. This is formally
an exponential gain over direct classical simulation since
measuring one component of the Husimi distribution at a
fixed timet will be logarithmic inNH. The same happens for
coarse-grained measurements at fixedt. Still, as " goes to
exponentially small values the dynamics for fixedt will be-
come very close to the classical one, so it is unclear which
new information can be gained this way.

To clarify the stability of these algorithms with respect to
errors, in Fig. 11 we show quantitatively the effects of im-
perfections on the Husimi distributions for a wave packet
spreading on the stochastic web for various numbers of qu-
bits and imperfection strengths. We computed the time scale

th for various parameter values,th being the time(number of
iterations) for which the error on the Husimi functions is half
the mean value of that function on the stochastic web.

The numerical data suggest the law

th < Ch/s«anq
bd, s8d

with a=1.02±0.02 (compatible with a=1) and b
=1.23±0.09 withCh<0.007. This law is polynomial in both
« andnq, which indicates that even though individual values
of the Husimi function can be exponentially small, the effect
of imperfections remains small compared to these individual
values for a polynomial time. This means that such quantities
can be reliably obtained in presence of moderate levels of
imperfections. More work is needed to understand the pre-
cise origin of the law(8). We note that in[11] where random
noise in the quantum gates were used as main source of
errors a similar polynomial(but different) law was found for
the relative error on the Husimi function.

FIG. 10. (Color online) Example of Husimi
distribution of a wave packet spreading on the
stochastic web; hereK=L=0.5, "=2p364/2nr

(838 cells), initial state is a Gaussian wave
packet of area" started half a cell above the cen-
ter of the figure, after 100 iterations using 2
340 slices per iteration. Left:«=0 and from top
to bottom nr =14, nr =11, nr =8 snq=nr +1d.
Right: nr =14 and from top to bottom«=10−6, «
=10−5, «=10−4. Color/grayness is related to am-
plitude of the Husimi function, from zero(blue/
black) to maximal value(red/white). Compare
with the classical diffusion in Fig. 2.
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B. Localized regime

WhenK is large enough for the chaotic zone to take most
of the classical phase space, a classical particle will propa-
gate diffusely in phase space. In contrast, for moderate val-
ues of the parameterK, all the eigenstates of the evolution

operatorÛ of (4) are localized(see Fig. 3). This localization
is a purely quantum phenomenon due to interference effects
and similar to the Anderson localization of electrons in sol-
ids. In this parameter regime, an initial wave packet will
have projections on only a small number of exponentially
localized eigenstates. Thus after a few iterations of the map,
the wave packet will stop spreading and stay in a region of
momentum space of size given by the localization length. An
example of such a wave function is shown in Fig. 12.

In this regime, it is possible to measure the localization
lengthl efficiently. Indeed, most of the probability is concen-
trated in a domain of sizel. If one performs a coarse grained
measurement of the wave function—i.e., only the most sig-
nificant qubits are measured—the number of measurements
will set the precision in units ofl. Thus once the desired
relative precision is fixed, the number of measurements is
independent ofl or nq. Nevertheless, if one starts from an
easily prepared initial wave packet—for example, on a single
momentum state—one has to evolve it long enough to reach

a saturation regime where the wave function is spread on a
domain of size<l. Classically, in the parameter regime
where the system is chaotic, the dynamics is diffusive
knstd2l<Dt with a diffusion constantD which depends on
parameters. One can expect the wave packet to follow for
short time this diffusive behavior which will stop when a
spreading comparable to the localization length is reached. In
this case, the wave packet needs to be evolved until a time
t* < l2/D. Classically, one needs to evolve a vector of di-
mension,l until the timet*; this needs,l3 classical opera-
tions. On a quantum computer, once the precision is set, the
three algorithms above need only a logarithmic number of
gates to perform one iteration, so the total number of gates is
,l2. This gives a polynomial improvement for the quantum
algorithm. It is known that in the delocalized phase, the wave
packet can spread ballistically for some regimes of param-
eter. If this extends to short times and to the localized re-
gime, then the gain becomes quadratic.

In Fig. 12, an example of a localized wave function is
shown for different imperfection strengths. At«=0, the ex-
ponential localization is clearly visible, the exponential de-
cay being leveled off at very small valuess<10−30d only by
numerical roundoff. For larger values of«, the localized peak
is still visible with the correct amplitude, but a larger and
larger background is visible, until the peak disappears.

To analyze in a more precise way the effects of imperfec-
tions, we have to specify the observable that is used to get
the localization length. On a classical computer, different
data analyses can be used to calculate the localization length
from knowledge of the wave function. A first way consists in
extracting the second moment of the wave functionksDnd2l,
which gives an estimate ofl once the saturation regime is
reached. One can also compute the inverse participation ratio

FIG. 11. Effects of imperfections on the Husimi distribution of a
wave packet spreading on the stochastic web; hereK=L=0.5, "
=2p364/2nr (838 cells), initial state is a Gaussian wave packet
of area" started half a cell above the center of the Fig. 2, and
iterations are made by the slice method using 2340 slices per
iteration. Straight line is the law(8) with a=1 andb=1.23. Crosses
corresponds to various values of« s10−6ø«ø10−4d and nr (5
ønr ø14, with nq=nr +1); averages were made over all Husimi
components inside the stochastic web and up to 100 realizations of
disorder for each« value. Inset: average relative error of the Husimi
function dh=kuh«−h0ul / kh0l on the stochastic web for«=10−4

(dashed line), «=10−4.5 (dotted line), «=10−5 (solid line), and nr

=10 snq=nr +1d. Average is taken over all Husimi components in-
side the stochastic web and 10 realizations of disorder. Logarithms
are decimal.

FIG. 12. (Color online) Example of wave function in the local-
ized regime. HereK=1, L=5, " / s2pd=s13−Î5d /82 (actual value is
the nearest fraction with denominator 2nr), initial state isuc0l= u0l,
after 1000 iterations using 2340 slices per iteration,nr =8 snq

=nr +1d, from bottom to top«=0 (black, solid line), «=10−7 (red,
dashed line), and«=10−3 (green, solid line). In the center, the first
two curves are superposed and indistinguishable. Logarithm is
decimal.
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(IPR) j=1/Snucsndu4. For a wave function uniformly spread
over M states this quantity is equal toM, and therefore it
also gives an estimate of the localization length. At last,l can
be measured directly by fitting an exponential function
around maximal values ofc.

For an exact wave function, all three quantities give simi-
lar results. On a quantum computer, they may have very
different behavior with respect to imperfection strength. In-
deed, it was shown in general[11,41] that the second mo-
ment is exponentially sensitive to the number of qubits in
presence of imperfections, making it a poor way to get infor-
mation about transport properties. The IPR was shown[41]
to be polynomially sensitive to both number of qubits and
imperfection strength. Still, the IPR may be difficult to mea-
sure directly on a quantum computer. On the other hand, the
direct measurement ofl by fitting an exponential curve on a
coarse-grained measure of the wave function was shown in
[41] to be an effective way to extractl from a quantum
computation of the wave function. It is therefore interesting
to study the behavior of both latter quantities with respect to
imperfections.

In Fig. 13, the time evolution of the IPR is shown for
different values of the imperfection strength. For«=0, the
wave packet first spreads fort, t*, and then the IPR be-
comes approximately constant and close to the localization
length. For larger values of«, the wave packet spreads to
much larger parts of phase space, but the IPR still saturates
after some time to a value which depends on« andnq.

The average value of this saturation value is shown in Fig.
14 as a function of« for different values ofnq. Figure 15
shows the localization length obtained from curve fitting for
the same wave functions. For large enough values of«, the
IPR grows very quickly, in a manner which seems exponen-
tially dependent onnq. The result of the curve-fitting strategy
is roughly similar, but shows an intermediate regime(«
<10−4 for our data) where it is still reasonably close to the

exact value while the IPR is already quite far off. This can be
understood qualitatively from the data shown in Fig. 12. In-
deed, the effect of moderate static imperfections is to create
a larger and larger background over which the localization
peak is superimposed. The IPR is sensitive to the presence of
this background, while by its very definition the curve-fitting
strategy isolates the localization peak from the background
and is therefore more robust. The data presented in Fig. 15
show that this peak keeps its shape with relatively good ac-
curacy until its final disappearance, even though a large

FIG. 13. Example of IPR with imperfections as a function of
time, in the localized regime. Parameters values are the same as in
Fig. 12, nr =8 snq=nr +1d, from bottom to top«=0, «=10−7, «
=10−4, and «=10−3. Data from «=0 and «=10−7 are
indistinguishable.

FIG. 14. IPR as a function of imperfection strength in the local-
ized regime. Parameters values are the same as in Fig. 12, withnr

=7 (solid line), nr =8 (dotted line), nr =9 (dashed line), andnr =10
(long-dashed line) snq=nr +1d. Averages were made over up to 10
realizations of disorder. Inset: fidelity as a function of imperfection
strength in the localized regime, with same parameter values and
line codes as in the main figure. Logarithms are decimal.

FIG. 15. Localization length as a function of imperfection
strength in the localized regime. Parameters values are the same as
in Fig. 12, with averages made over up to 10 realizations of disor-
der. Logarithm is decimal.
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chunk of its amplitude has been transfered elsewhere by im-
perfections. The inset of Fig. 14 shows the fidelity of the
same wave functions[fstd= ukcstd uc«stdlu2 whereucstdl is the
exact wave function anduc«stdl the one in presence of im-
perfections]. It is interesting to note that the localization
length and IPR can be quite well reproduced even for values
of « where the fidelity is already quite low.

A more precise analysis can be developed from the effect
of imperfections on the eigenstates of the unperturbed evo-

lution operatorÛ in Eq. (4). These eigenstatesucal can be
written as a sum over momentum statesuml, which coincide
with quantum register states of the quantum computer when
the system is in momentum representation:

ucal = o
m=1

NH

ca
muml. s9d

In the localized regime, the eigenstatesucal are localized
with localization lengthl; therefore, theca

m are significant
only for ,l values ofm, with an average value of 1/Îl.
Using perturbation theory, one can estimate the typical ma-
trix element of the imperfection Hamiltonian(6) between
eigenstates. For the first term of Eq.(6), this gives

Vtyp , Ukcbuo
i=1

nq

disi
ẑtgngucalU

, tgngU o
m,n=1

NH

ca
mcb

n*knuo
i=1

nq

disi
ẑumlU , s10d

whereNH=2nr is the dimension of Hilbert space on whichÛ
acts,tg is the time for one gate, and the term due toD0 in Eq.
(6) is not taken into account since it can be eliminated easily.
This estimate(10) is an approximation, since the action of

Eq. (6) is separated from the action ofÛ and in reality they
are intertwined and do not commute. In Eq.(10), only ,l
neighboring quantum register states are coupled throughnq
terms of different detuningdi (with random sign). This term
therefore gives on average«ng

Înq/Îl. The second term of
Eq. (6) in the same approximation will be the sum ofnq
terms, each coupling one stateuml with another state differ-
ing by two neighboring qubitsunl= um+rl. So a stateucal is
coupled significantly only to statesucbl localized at a dis-
tancer in momentum fromucal. Therefore the same estimate
applies, and overall one can estimateVtyp,«ng

Înq/Îl.
One can suppose that the IPR will become large when

perturbation theory breaks down. This happens whenVtyp is
comparable to the distance between directly coupled states
Dc. From the arguments above, one expects that one state is
coupled to,l states so that this distance isDc,1/l. The
threshold when IPR or localization length become large is
thereforeVtyp,Dc which corresponds to

«c < C1/sng
Înq

Îld, s11d

whereC1 is a numerical constant andng is number of gates
per iteration,nq number of qubits, andl the localization
length. Figure 16 is compatible with this scaling, with
C1/Îl <0.3. We note that this threshold is similar to the

threshold for the transition to quantum chaos presented for a
quantum computer not running an algorithm in[35].

When perturbation theory breaks down, it is usually ex-
pected from earlier works on quantum many-body physics
[35,42] that the system enters a Breit-Wigner regime where
the local density of states is a Lorentzian of half-widthG
<2puVtypu2/Dc according to the Fermi golden rule. This im-
plies that the IPR grows likeG /Dn,«2ng

2nqN, where Dn
,1/NH,1/N is the mean level spacing(N=2NH since there
is an ancilla qubit). This is not confirmed by the data shown
on Fig. 17, which suggest that the IPR scales like«. This
indicates that in our system we are in a regime different from
the golden rule(Breit-Wigner) regime.

FIG. 16. Critical value of« (error strength) as a function of
parameters forK=2, L=27, with other parameter values the same
as in Fig. 12.«c is defined by a saturation value of IPR twice the
unperturbed value. Averages were made with up to 10 realizations
of disorder. Solid line is the formula(11). Logarithms are decimal.

FIG. 17. IPR as a function of«. Parameters values are the same
as in Fig. 16. Solid lines correspond to the dependencej~«. Loga-
rithms are decimal.
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Such a regime is present for large perturbation strength in
many-body systems. It is indeed known that for large enough
values of the couplings, the system leaves the golden rule
regime and enters a new regime where the local density of
states is a Gaussian of width given by the variances. The
variance can be approximated bys2,obÞaVtyp

2 ,«2ng
2nq. In

this regime the IPR is given bys /Dn,«ng
ÎnqN, which is

consistent with data from Figs. 14 and 17. This regime is
known to supersede the golden rule regime forG.s, which
should therefore be the case for our system. This implies that
the relevant time scale for the system to remain close to the
exact one is 1/s. For the largest values ofnq, the data in Fig.
17 show some departure from this law, which may be due
simply to statistical fluctuations(the averaging is made over
more instances for smallernq) or a shift toward the golden
rule regime for largenq.

The scaling laws obtained in this regime show that for
«,«c, with «c given by Eq.(11), the system is still localized
in presence of imperfections, and the localization length is
close to the exact one. In this case, the localization length is
correct for very long times, much longer than for example
the fidelity decay time. For larger«, the system with imper-
fections is delocalized. We still expect it to be close to the
exact one up to a time,1/s,1/s«ng

Înqd.

C. Partially delocalized regime

For larger values ofK at L fixed, the system enters a
partially delocalized region. In this regime, there is a coex-
istence of localized and delocalized eigenstates. An initial
wave packet will have significant projections on all delocal-
ized eigenstates but only on neighboring localized eigen-
states. After a certain number of time steps(kicks) the part
corresponding to delocalized states will spread in all the sys-
tem, while the localized part will remain close to the initial
position. Figure 18 shows an example of a wave packet ini-
tially at n=0 after 100 iterations in this regime, displaying an
exponential peak corresponding to localization superimposed
on a plateau which spreads with time to larger and larger
momentum. It is known that the spreading of the wave
packet in this regime(for large enough time) is ballistic away
from the lineK=L and diffusive on this line.

In this regime, as above a coarse-grained measurement
can give the localized part with moderate accuracy, thus en-
abling one to compute the localization length. As in the pre-
ceding part, the gain over classical computation will be poly-
nomial. As concerns the delocalized part of the wave
function, it seems at first sight that getting information on it
is difficult, since it takes very long time to reach its satura-
tion distribution(it has to spread diffusively or ballistically
through the whole system), and this distribution itself is
spread over the exponentially large system. Still, after a time
large enough for the wave packet to spread beyond the lo-
calization length, the structure of the wave function can be
seen very clearly from coarse-grained measurements whose
number is on the order of the localization length. Once such
a coarse-grained measurement has been performed and the
localization length found by fitting an exponential function
around the maximum, the relative importance of the plateau

can be found by subtracting the localized part. Even though
the plateau has not yet reached its final distribution, its inte-
grated probability is related to the number of eigenstates
which are delocalized at these parameter values. This infor-
mation enables us to monitor the transition precisely for dif-
ferent values ofK andL, nontrivial information as seen from
Fig. 3. The number of operations for classical and quantum
algorithms are the same as for the localization length, and
therefore the same polynomial gain can be expected. Another
quantity which can be readily obtained is the quantum diffu-
sion constant. Indeed, away from the lineK=L, it is known
that a quantum wave packet initially localized in momentum
will spread anomalously(ballistically) with the law kn2stdl
<Dat

2. Classically, estimating the diffusion constant requires
one to simulate the system until some timet*. This requires
one to evolve,t* quantum states until the timet*, making
the total number of operation,st* d2. On a quantum com-
puter, one time step requires a logarithmic number of opera-
tions, so the total number of operations is,t* (t* iterations
followed by a constant number of coarse-grained measure-
ments), a quadratic gain compared to the classical algorithm.
Close to the lineK=L, the quantum diffusion becomes nor-
mal with the lawkn2stdl<Dnt. In this regime, the same com-
putation gives a number of operation,st* d3/2 classically
compared to,t* for the quantum algorithm, with still a
polynomial gain. Such computations can give quite interest-
ing results, in particular to specify precisely which kind of
diffusion is present in the vicinity of the lineK=L, a ques-
tion which is not definitively settled.

Effects of different strengths of imperfections can be seen
in Fig. 18. For moderate values of«, a flat background of
larger and larger amplitude is created by the imperfections.
When this background reaches the values of the plateau due

FIG. 18. (Color online) Example of wave function in the par-
tially delocalized regime. HereK=2, L=5, " / s2pd=s13−Î5d /82
(actual value is the nearest fraction with denominator 2nr), initial
state isuc0l= u0l, after 100 iterations using 2340 slices per itera-
tion, nr =8 snq=nr +1d, from bottom to top«=0 (black, solid line),
«=10−7 (red, dashed line), and «=10−3 (green, solid line). In the
center, the first two curves are superposed and indistinguishable.
Logarithm is decimal.

QUANTUM COMPUTATION OF A COMPLEX SYSTEM:… PHYSICAL REVIEW E 70, 056218(2004)

056218-13



to delocalized states, information on these delocalized states
is lost, but the localized peak remains until« is large enough
to destroy it. This is visible also in Fig. 19 which displays the
time evolution of a wave function in this transition region.
The data for«=0 show the spreading of the wave packet due
to delocalized eigenstates; the IPR does not reach the dimen-
sion of Hilbert space since part of the amplitude does not
spread due to localized states. For intermediate values of«,
the spreading concerns more and more of the total amplitude,
increasing the IPR, until a large enough value of« is reached
and the wave function is completely delocalized.

In this regime, the analysis of the preceding section
should be modified. Indeed, a certain fractionb of the Flo-

quet eigenstatesucal of Û (unperturbed) in Eq. (4) are not
localized. For these delocalized states, theca

m of Eq. (9) have
small nonzero values,1/ÎNH for all m. The estimation
Vtyp,«ng

Înq/Îl for the typical matrix element of the imper-
fection Hamiltonian(6) between eigenstatesucal and ucbl
remains correct only ifucal and ucbl are both localized.

If ucal and ucbl are both delocalized, one hasca
m,cb

n

,1/ÎNH in Eq. (10) for most m,n. This implies that the
quantities om=1

NH ca
mcb

m, previously of order 1/Îl, becomes
,1/ÎNH (sum of NH terms of order,1/NH with random
signs). This modifies the estimate forVtyp: with the same
reasoning as in the localized case, one hasVtyp

,«ng
Înq/ÎNH.

If one of the statesucal anducbl is localized and the other
one delocalized, thenom=1

NH ca
mcb

m is the sum ofl terms of order
,1/sÎlÎNHd with random signs, which is of order,1/ÎNH.
This gives the same estimateVtyp,«ng

Înq/ÎNH for the ma-
trix element as if both states were delocalized.

Therefore, if a proportionb of the unperturbed Floquet
eigenstates are delocalized, both localized and delocalized
eigenstates will have matrix elements of orderVtyp

,«ng
Înq/ÎNH with bNH other eigenstates. This will be the

dominant effect, since these couplings lead perturbation
theory to break down much earlier than for the purely local-
ized system. Indeed,Vtyp is comparable to the distance be-
tween directly coupled statesDc,1/NH,1/N (since N
=2NH) for «ng

Înq/ÎN,1/N, which corresponds to

«c < C2/sng
Înq

ÎNd, s12d

whereC2 is a numerical constant,ng the number of gates per
iteration,nq the number of qubits, andN=2nq the dimension
of the Hilbert space of the quantum computer. Figure 20 is
compatible with this scaling, withC2<7.4.

In this regime, the critical interaction strength drops there-
fore exponentiallywith the number of qubits, in sharp con-
trast with the localized regime. This effect has been noted for
a different system in[43] and is similar to the enhancement
of weak interaction in heavy nuclei[44]. The physical
mechanism is that the much smaller coupling term between
states is compensated by the even smaller distance in energy
between coupled states. This result implies that even for
moderate number of qubits, a small interaction strength is
enough to modify enormously the long-time behavior of the
system: saturation values of the IPR are very much affected
by the perturbation, much more so than in the localized re-
gime. However, for short time the behavior of the system
should be close to the unperturbed one, implying that the
measures suggested to get interesting information, such as
relative size of the plateau and diffusion constants can still be
accessible.

Figure 21 shows examples of the growth of the IPR as a
function of K and imperfection strength. In the partially de-
localized zone, the figure shows a growth of the IPR withK,
which is strongly affected by imperfections. An interesting
quantity is the value of the transition point between localized

FIG. 19. Example of IPR in presence of imperfections as a
function of time in the transition regime. HereK=4, L=5,
" / s2pd=s13−Î5d /82 (actual value is the nearest fraction with de-
nominator 2nr), initial state isuc0l= u0l with 2340 slices per itera-
tion, nr =8 snq=nr +1d, from bottom to top«=0, «=10−7, «=10−4,
and«=10−3. Data from«=0 and«=10−7 are indistinguishable.

FIG. 20. Critical value of« (error strength) as a function of
parameters forK=10, L=27 with other parameter values the same
as in Fig. 18.«c is defined by a saturation value of IPR twice the
unperturbed value. Averages were made with up to 10 realizations
of disorder. Solid line is the formula(12). Logarithms are decimal.
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and delocalized states. In systems such as the Anderson
model investigated in[30], the transition point is well de-
fined, since all states are localized or delocalized on one side
of the transition. In the case of the kicked Harper model there
is some arbitrariness in the definition. We chose as transition
point the valueKc (at L fixed) for which the IPR isNH /4
=N/8 (even for a totally delocalized state, the IPR is actually
often NH /2=N/4 instead ofNH due to fluctuations). In the
partially delocalized regime, the IPR at fixedK should grow
with «. If the system is in the Breit-Wigner(golden rule)
regime, the IPR should grow asG /Dn whereDn,1/N is the
mean level spacing andG<2puVtypu2/Dc,«2ng

2nq. We there-
fore expect the transition point to move with imperfections
asG /Dn,«2ng

2nqN. On the contrary, in the Gaussian regime,
the IPR grows likes /Dn, wheres,«ng

Înq. In this case the
transition point should move as«ng

ÎnqN.
Figure 22 shows the data numerically obtained for the

shift of the transition point due to imperfections. It indicates
thatDKc,«ng

ÎnqN agrees with the data, whereas«2ng
2nqN is

a much less reasonable scaling variable(data not shown).
The data therefore seem to indicate that in the partially de-
localized regime as in the localized regime, the IPR grows as
«ng

ÎnqN, as does the shift of the transition point. This result
is in sharp contrast with the findings of[30] for the Anderson
transition, which was shown to scale polynomially with the
number of qubits. In our case, the presence of delocalized
state coexisting with localized states makes the delocaliza-
tion much easier in presence of imperfections.

Figure 23 shows the scaling of the IPR as a function of«.
For small values ofnq, the IPR without imperfections is al-
ready a large fraction of Hilbert space dimension, so data are
meaningful only fornr ù9. Still, data shown in Fig. 23 seem
to indicate that the regime wherej~« is present, confirming
that the system is in a Gaussian regime rather than in the
golden rule regime.

The scaling laws obtained in this regime show that there
is an exponentially small value«c given by Eq.(12) above
which imperfections destroy the localization properties of the
system. In particular, the transition point is exponentially
sensitive to the number of qubits. This sharp difference be-
tween localized and delocalized regime can be easily seen on
experiments: the long-time behavior of the system will be
very different in both cases. Still, the algorithms presented
can be useful in delocalized regime in presence of imperfec-
tions, even for«.«c. Indeed, the system should remain
close to the exact one up to a time,1/s,1/s«ng

Înqd as in
the localized regime, so measurability of physical quantities

FIG. 21. IPR in presence of imperfections as a function ofK in
the transition regime. HereL=27, " / s2pd=s13−Î5d /82 (actual
value is the nearest fraction with denominator 2nr), initial state is
uc0l= u0l, IPR is shown after 100 iterations using 2340 slices per
iteration, andnr =8 snq=nr +1d, with averages made over 10 real-
izations of disorder.

FIG. 22. Shift of the transition point due to imperfections as a
function of imperfection strength andnq. Parameters values are the
same as in Fig. 21, with averages made over up to 10 realizations of
disorder. Solid line corresponds to the dependenceDKc~«ng

ÎnqN.
Logarithms are decimal.

FIG. 23. IPR as a function of« for K=10, L=27 with other
parameter values the same as in Fig. 18. Solid lines correspond to
the dependencej~«. Logarithms are decimal.
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will eventually rest on the comparison of this time scale with
the time for the system to show the delocalization plateau.
On the contrary, in the localized regime for moderate levels
of imperfections the localization length can be measured for
very long times.

V. SPECTRUM: MEASUREMENT AND IMPERFECTION
EFFECTS

Another type of physical properties which can be obtained
through quantum simulation of the kicked Harper model

concerns the spectrum of the evolution operatorÛ. This
spectrum has been the focus of many studies(see, e.g.,[23]):
it shows multifractal properties, and transport properties(lo-
calized or delocalized states) are reflected in the eigenvalues,
as well as dynamical properties(chaotic or integrable states).
Additionally, for smallK=L, this spectrum will be close to
the famous spectrum of the Harper model(“Hofstadter but-
terfly”), which shows fractal properties[15], as can be seen
in Fig. 24.

To get information about eigenvalues, we can use the
phase estimation algorithm. This algorithm, at the heart of
the Shor algorithm, proceeds by transforming the state
otutluc0l into otutluUtc0l. Then a QFT of the first register will
give peaks at the values of the eigenphases ofU. To be
efficient, this process should be applied to operatorsU for
which exponentially large iterates can be obtained in polyno-
mial number of operations. In[45] it was suggested that even
if this condition is not fulfilled one can obtain approximate
eigenvalues exponentially fast provided one starts from an
initial stateuc0l already close to an eigenvector. In the case at
hand, we do not know how to get exponentially large iterates
in polynomial time or how to build a good approximation of
the eigenvectors without knowing them. We therefore sug-
gest a third strategy, which is more generally applicable than
the ones above, but does not yield an exponential gain.

We first build the stateot=0
NH−1utluc0l, whereuc0l is an ar-

bitrary quantum state on a Hilbert space of dimensionNH

=2nr which can be efficiently built; for example, it can be the
state 2−nr/2onunl, which can be obtained fromu0l with nr
Hadamard gates. Once the stateu0luc0l is realized, it can be
transformed withnr Hadamard gates on the first register into
2−nr/2ot=0

NH−1utluc0l. We have seen that the evolution operator
U can be implemented in polyslog NHd operations by the
three strategies exposed in Sec. III. Therefore we can apply
powers ofU on the second register controlled by the value of
the first register. This yields 2−nr/2otutluUtc0l in OsNHd op-
erations, up to logarithmic factors. A QFT of the first register
will yield peaks centered at eigenvalues of the operatorU.
Thus measurement of the first register will give an eigen-
value ofU with good probability inOsNHd operations includ-
ing measurement. A drawback of this approach is that peaks
have additional probabilities on nearby locations, and since
the number of eigenvalues isNH, measuring the precise
shape of all peaks will be inefficient[OsNH

2 d operations]. A
more precise, although slower, method is to use amplitude
amplification[46] (a method derived from the Grover algo-
rithm [3]) to zoom on a small part of the spectrum. This
enables to get the precise values of all eigenvalues in a given
interval. The total cost will beOsNH

ÎNHd operations. This
methods which uses Grover’s search on phase estimation can
be seen as a process reverse to quantum counting[47] (where
phase estimation is used on the Grover operator).

Calculating the spectrum by direct diagonalization of a

NH3NH matrix such as the one of the operatorÛ of Eq. (4)
requires in general of the order ofNH

3 classical operations.

However, in the case of the operatorÛ of Eq. (4) there is a
faster classical method similar to the quantum phase estima-

tion algorithm: one iteration ofÛ can be computed classi-
cally in OsNHd operations(up to logarithmic factors) by us-
ing the classical FFT algorithm to shift betweenn and u
representations and multiplying by the relevant phase in each
representation. Iterating this processNH times and keeping
each intermediate wave function costsOsNH

2 d operations.
Then a FFT enables to get the spectrum ofU with
OsNH log NHd operations. This method was advocated in[48]
for getting the spectrum of the kicked Harper model. There-
fore it is possible to get the spectrum classically inOsNH

2 d
operations up to logarithmic factors. Thus the quantum algo-
rithms explained above[OsNHd operations for one eigen-
value with unknown precision,OsNH

ÎNHd for all eigenval-
ues in a given small interval] realize a polynomial gain
compared to the classical ones. It is important to note that
although the number of operations needed is only polynomi-
ally better in the quantum case, the spatial resources are ex-
ponentially smaller(logarithmic number of qubits compared
to the number of classical bits).

The Figs. 25–27 show the spectrum of the kicked Harper
model in presence of errors for both slice and Chebyshev
methods. The error model chosen is the static imperfection
Hamiltonian (6) as in the preceding section. The evolution
operator was computed by evolving basis states in presence
of errors and then diagonalizing the resulting operator. The
spectrum shown corresponds to smallK=L, where the spec-
trum is close to the “Hofstadter butterfly,” as can be seen in
Fig. 24. Only 16 eigenvalues are shown. Overall phase shifts

FIG. 24. Eigenphases of the Harper operator(4) as a function of
" for K=L=10−3; nr =8.
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due to errors were eliminated since it seems reasonable they
can be estimated and compensated. It is clear from the data
presented that eigenvalues are much more sensitive to
strength of errors than transport properties. Numerical limi-
tations prevented us to find the scaling innq of error effects,
but Figs. 26–28 show the scaling with respect to« at con-
stantnq.

In the case of the slice method, the average error on the
eigenvalue is clearly linear in«. We think this corresponds

probably to a perturbative regime, since small values of« are
involved. For the Chebyshev method, our data indicate that a
lower level of errors is needed than in the slice method to get
good accuracy. This could have been expected, since we es-
tablished in Sec. III that this method necessitates more gates
for a similar accuracy, and each gate introduces errors. The
scaling of errors with respect to« indicates the lawDE
,«a with a<1.3.

FIG. 25. Eigenphases of the evolution operatorÛ of Eq. (4) as a
function of imperfection strength. The slice method is used with 2
3100 slices to compute the operator. The 16 eigenphases closest to
0 are shown. Herenr =6 snq=nr +1d, "=2p /26 (actual value is the
nearest fraction with denominator 26), andK=L=10−3. An overall
phase factor(global motion of eigenvalues) has been eliminated.
Logarithm is decimal.

FIG. 26. Average error(in units of mean level spacing) of com-
puted eigenphases through the slice method as a function of imper-
fection strength; parameters are the same as in Fig. 25, and averages
were made over all eigenvalues and over 10 realizations of disorder.
Dashed line corresponds toDE~«. Logarithms are decimal.

FIG. 27. Eigenphases of the evolution operatorÛ of Eq. (4) as a
function of imperfection strength. The Chebyshev method is used; a
Chebyshev polynomial of degree 6 is taken, keeping all gates. The
16 eigenphases closest to 0 are shown. Herenr =6 snq=nrd, "
=2p /26 (actual value is the nearest fraction with denominator 26),
and K=L=10−3. An overall phase factor(global motion of eigen-
values) has been eliminated. Logarithm is decimal.

FIG. 28. Average error(in units of mean level spacing) of com-
puted eigenphases through the Chebyshev method as a function of
imperfection strength; parameters are the same as in Fig. 27, and
averages were made over all eigenvalues. Dashed line corresponds
to DE~«1.3. Logarithms are decimal.
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VI. CONCLUSION

In this paper, several quantum algorithms were presented
which enable to simulate the quantum kicked Harper model,
a complex system with relevance to certain physical prob-
lems. The comparison showed that while the slice method
and the Chebyshev method are approximate, they are much
more economical in resources than the exact simulation. It
was also shown that different transport and spectral proper-
ties can be obtained more efficiently on a quantum computer
than classically, although the gain is only polynomial. Nu-
merical simulations enabled us to precise the effect of nu-
merical errors on these algorithms and also to evaluate the
effects of imperfections. The results show that depending on
the regime of parameters, the same quantity can be stable or
exponentially sensitive to imperfections. In general, in pres-
ence of moderate amount of errors the results of the algo-
rithm can be meaningful, but a careful choice of the mea-
sured quantities should be done. For the different quantities
computed, the slice method was shown to be more efficient

and resilient to errors than the Chebyshev method, although
the latter is similar to the method used in classical computers
to evaluate functions.

Our results show that interesting quantum effects such as
fractal-like spectrum, localization properties, and anomalous
diffusion are already visible with 7–8 qubits. We therefore
believe that such algorithms could be used in experimental
implementations in the near future.
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